ACTIVE FOCUS™ Optical Design:

Only one *presbyopia-correcting* IOL design delivers a full range of vision with *uncompromised distance*\(^{13}\) and *unrivaled stability*.\(^{46}\)

Alcon A Novartis Division

ACTIVE FOCUS™ Optical Design

AcrySof IQ ReSTOR® +1.5 D MULTIFOCAL IOL

AcrySof IQ ReSTOR® +2.5 D MULTIFOCAL IOL
Quality distance vision is the foundation to a patient’s active, independent lifestyle7,8

ACTIVE.
They drive, work and play — often outdoors7

SOCIAL.
They’re engaged with family and friends7

6.0 mm optic provides:
- 87.4\% of energy to the eye*1
- 81\% of energy to the eye for TECNIS† Symfony†,**9

*3 mm pupil energy distribution: distance + near.
**3 mm pupil energy distribution: distance + intermediate.

The only multifocal optic featuring a central portion 100\% dedicated to distance†

*Trademarks are the property of their respective owners.
Unique optic design, unique benefits

Optical Profiles‡,1,9

<table>
<thead>
<tr>
<th>IOL</th>
<th>Near focal point</th>
</tr>
</thead>
<tbody>
<tr>
<td>ReSTOR® +3.0 D</td>
<td>18 inches</td>
</tr>
<tr>
<td>ReSTOR® +2.5 D with ACTIVEFOCUS™ optical design</td>
<td>21 inches</td>
</tr>
<tr>
<td>Symfony†</td>
<td>26 inches</td>
</tr>
</tbody>
</table>

Peak Near Performance1,2,10,11

Distance visual acuity comparable to a monofocal IOL — in post-LASIK eyes8,12:

Even in some of your most challenging patients, ReSTOR® +2.5 D IOLs with ACTIVEFOCUS™ optical design can help you achieve visual acuity comparable to AcrySof® IQ monofocal IOLs.5

- IOLs with ACTIVEFOCUS™ optical design (n=23) vs. AcrySof® IQ monofocal IOLs (n=18)
- Comparable percentage of eyes with 20/25 UCDVA or better (p=0.41)

*Surface profile of the TECNIS† Symfony† 28.0 D IOL was measured using Bruker Contour white light interferometer on the posterior surface and the diffraction efficiency calculated. Optical profile of the ReSTOR® +2.5 D IOL, model SV2ST0 is based on its design profile.

†Scaled to mm from microns (μ) for readability.

1,2,10,11 Derived from the defocus curve in each respective product's directions for use.
UNCOMPROMISED DISTANCE

Excellent contrast at distance

ACTIVEFOCUS™ Optical Design:
Contrast at Distance*†,3

<table>
<thead>
<tr>
<th>AcrySof® IQ Monofocal SN60WF</th>
<th>AcrySof® IQ ReSTOR® +2.5 D SV25T0</th>
<th>TECNIS™ Multifocal +2.75 D ZKB00</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 mm pupil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5 mm pupil</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Images derived from Vega, et al. figure 2 (fn 5). Slit pattern bench test displayed in logarithmic scale of intensity for halo assessment at distance vision. Only IOLs approved in the U.S. are displayed.
†Model eye; 0.28μ spherical aberration.

Contrast sensitivity is comparable to a monofocal IOL1,2,13

Binocular Mesopic Contrast Sensitivity‡,13
4–6 Months Post-op

<table>
<thead>
<tr>
<th>Spatial Frequency (Cycles per Degree)</th>
<th>Mean Contrast Sensitivity (Log Units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5 cpd (n=127/130)</td>
<td>1.50 ± 0.10</td>
</tr>
<tr>
<td>2 cpd (n=128/132)</td>
<td>1.45 ± 0.10</td>
</tr>
<tr>
<td>3 cpd (n=116/128)</td>
<td>1.40 ± 0.10</td>
</tr>
<tr>
<td>6 cpd (n=103/117)</td>
<td>1.35 ± 0.10</td>
</tr>
</tbody>
</table>

‡With glare. Descriptive statistics only.

Trademarks are the property of their respective owners.
ACTIVEFOCUS™ Optical Design:
Designed to minimize visual disturbances14

Headlight Simulated Images5,14,15

- AcrySof® IQ Monofocal
- AcrySof® IQ ReSTOR® +2.5 D with ACTIVEFOCUS™
- AcrySof® IQ ReSTOR® +3.0 D
- TECNIS® Symfony® +1.75 D
- TECNIS® Multifocal +2.75 D
- TECNIS® Multifocal +3.25 D

*Pinhole images of AcrySof® and competitor models using the 0.2 μm SA Modified ISO model eye and a 5-mm pupil at the IOL plane.

Impact of decentration on distance image quality16

Distance MTF With Decentration11,16

\textbullet ReSTOR® +2.5 D IOL with ACTIVEFOCUS™ optical design:
\textbullet Maintains its MTF score through 0.5 mm of IOL decentration

About MTF (Modulation Transfer Function)
\textbullet MTF measures a lens’s ability to preserve original contrast in an image: It’s the ratio of image contrast to object contrast17

What are the potential costs of IOL decentration and instability?

Surgeon
\textbullet Unhappy patients?
\textbullet Additional cost and delay from follow-up visits, repositioning and other additional care?

Patient
\textbullet Disappointment with visual outcome?
\textbullet Inconvenient or time-consuming follow-up and additional care?

11 Decentered MTF measurements of TECNIS low-add multifocal IOLs and ReSTOR IOLs using 3 mm pupil, photopic spectrum.
UNRIVALED STABILITY

Lock in astigmatic outcomes with AcrySof® IQ Toric and Multifocal Toric IOLs

AcrySof® IQ Toric
0.75% off target ≥5°, by estimated market usage*,6 n=3,556

TECNIS† Toric
2.5X more likely to rotate than AcrySof® IQ Toric6

TECNIS† Toric
1.86% off target ≥5°, by estimated market usage*,6 n=1,953

In evidence from thousands of cases entered into AstigmatismFix.com,* TECNIS† Toric IOLs were more likely to rotate ≥ 5° post-op than AcrySof® IQ Toric IOLs.6

*AstigmatismFix.com is an online calculator to help surgeons determine if a previously placed toric IOL is ideally aligned. The analysis dataset includes 5,674 entries, with each unique lens and intended orientation identified, in addition to post-operative IOL orientation ≥5° from intended axis. The dataset was weighted based on the estimated market usage of each lens. The full evaluation included AcrySof® IQ Toric, TECNIS† Toric, Trulign† Toric and Staar† Toric IOLs.7
Excellent capsular adhesion18,19

Fibronectin Adhesion Comparison\textsuperscript{,18}**

\[\begin{array}{c|c|c}
\text{AcrySof® IQ} & 5.00 \pm 0.50 & 4.00 \pm 0.50 \\
\text{TECNIS†} & 3.00 \pm 0.50 & 2.00 \pm 0.50 \\
\end{array} \]

\(p<0.001 \)

\(\mu g \) Protein

\(n=12 \) \(n=11 \) \(n=12 \) \(n=11 \)

Fibronectin adsorption

Persistent fibronectin adsorption after sodium dodecyl sulfate treatment

*In vitro fibronectin protein adhesion assay comparing the amount of fibronectin adsorbed to AcrySof®, HOYA® and TECNIS† acrylic IOLs, as well as polymethacrylate IOLs. Fibronectin adsorption was quantified using the Thermo Scientific® Micro BCATM Protein Assay kit†.

BioMechanics Advantage: Engineered for optimal refractive predictability

AcrySof® IQ Toric IOL Profile22

- Excellent axial positioning and rotational stability for refractive predictability4,22,25-27
- No observed rotational bias6

TECNIS† Toric IOL Profile23

- Observed bias toward counterclockwise rotation6
- Offset haptic design may increase risk of hyperopic shift24

AcrySof® BioMaterial Advantage: greater fibronectin binding than TECNIS† IOL material to promote excellent capsule adhesion18,19 with low Nd:YAG rates20,21

†Trademarks are the property of their respective owners.
DELIVER UNCOMPROMISED DISTANCE AND UNRIVALED STABILITY.

Physical Characteristics

<table>
<thead>
<tr>
<th>Model Number</th>
<th>SV25T0</th>
<th>SV25T3</th>
<th>SV25T4</th>
<th>SV25T5</th>
<th>SV25T6</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOL Cylinder Power (Diopters)</td>
<td>0 D</td>
<td>1.5 D</td>
<td>2.25 D</td>
<td>3.00 D</td>
<td>3.75 D</td>
</tr>
<tr>
<td>Corneal Plane</td>
<td>0 D</td>
<td>1.03 D</td>
<td>1.55 D</td>
<td>2.06 D</td>
<td>2.57 D</td>
</tr>
<tr>
<td>Diopter Correction Range</td>
<td>0 D</td>
<td>.75-1.28 D</td>
<td>1.29-1.80 D</td>
<td>1.81-2.32 D</td>
<td>2.33-2.82 D</td>
</tr>
</tbody>
</table>

Add-Power

- +2.5 D

Add-Power Spectacle Plane

- +2.0 D

Number of Diffractive Steps

- 7 steps (Applied)

Filtration

- Ultraviolet and blue light filtering

Optic Material

- Acrylate/Methacrylate Copolymer

Central Optic Zone

- Refractive

Optic Diameter

- 6.00

Overall Length

- 13.0 mm

Starting A-constant

- 119.11°/119.3°

Index of Refraction

- 1.55

Haptic Applanation

- 0°

Haptic Configuration

- STABLEFORCE Haptic

*Theoretical A-constant from product labeling (optical biometry/SRK-T formula at 6 m)

Clinically derived from U.S. clinical study results of 294 eyes at 14 clinical sites (optical biometry/SRK-T formula at 4 m)